Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies.

نویسنده

  • M M Shi
چکیده

BACKGROUND Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients' genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. APPROACH This article reviews the recent technology development in mutation detection and genotyping with a focus on genotyping of single nucleotide polymorphisms (SNPs). CONTENT Novel mutations/polymorphisms are commonly identified by conformation-based mutation screening and direct high-throughput heterozygote sequencing. With a large amount of public sequence information available, in silico SNP mapping has also emerged as a cost-efficient way for new polymorphism identification. Gel electrophoresis-based genotyping methods for known polymorphisms include PCR coupled with restriction fragment length polymorphism analysis, multiplex PCR, oligonucleotide ligation assay, and minisequencing. Fluorescent dye-based genotyping technologies are emerging as high-throughput genotyping platforms, including oligonucleotide ligation assay, pyrosequencing, single-base extension with fluorescence detection, homogeneous solution hybridization such as TaqMan, and molecular beacon genotyping. Rolling circle amplification and Invader assays are able to genotype directly from genomic DNA without PCR amplification. DNA chip-based microarray and mass spectrometry genotyping technologies are the latest development in the genotyping arena. SUMMARY Large-scale genotyping is crucial to the identification of the genetic make-ups that underlie the onset of diseases and individual variations in drug responses. Enabling technologies to identify genetic polymorphisms rapidly, accurately, and cost effectively will dramatically impact future drug and development processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacogenetic Application of High-Throughput Mutation Detection and Genotyping Technologies

Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients’ genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. This article will address the recent technolog...

متن کامل

Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases.Objectives: Development of a new Multiplex Tetra-Primer Amplifi cation Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

Implementation and utilization of genetic testing in personalized medicine

Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and ne...

متن کامل

SLAF-seq: An Efficient Method of Large-Scale De Novo SNP Discovery and Genotyping Using High-Throughput Sequencing

Large-scale genotyping plays an important role in genetic association studies. It has provided new opportunities for gene discovery, especially when combined with high-throughput sequencing technologies. Here, we report an efficient solution for large-scale genotyping. We call it specific-locus amplified fragment sequencing (SLAF-seq). SLAF-seq technology has several distinguishing characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2001